On the Best Compact Approximation Problem for Operators between L_{p}-Spaces

H. Bang and E. Odell*
Department of Mathematics. Linuersioy of Texas. Austin. Texas 78712, U.S.A.
Communicated by E. W' Chene
Received September 4. 1985

Abstract

We construct (for $1<p<2$) an operator from l_{p}, into L_{p}, which has no nearest compact operator. We also give a sufficient condition for an operator from L_{p} into, $L_{n}(2<p<\infty)$ to have a best compact approximant. - 1987 Academic Pross, Inc.

1. Introduction

A pair of Banach spaces, (X, Y), is said to have the best compact approximation property (b.c.a.p.) if, for every bounded linear operator $T: X \rightarrow Y$, there exists a compact operator $K: X \rightarrow Y$ satisfying $\|T-K\| \leqslant$ $\left\|T-K^{\prime}\right\|$ for all compact K^{\prime}. We say X has the b.c.a.p. if (X, X) does. It is known that l_{p}, has the b.c.a.p. for $1 \leqslant p<x$ (see [ABJS; MW]) while $l,$. L_{1}, L_{6}, and $C[0,1]$ fail to have it [F]. Recently, with an elegant argument, Benyamini and Lin [BL] showed that, for $1<p<x, p \neq 2, L_{\text {, }}$ fails the b.c.a.p. In this paper we extend their result by showing (l_{p}, L_{p}) fails the b.c.a.p. for $1<p<2$ (Theorem 4). We use their key lemma (Lemma 3) but the technical details in our case are much more difficult.

In the last section of this paper (Theorem 16) we give a sufficient condition for an operator $T: L_{p} \rightarrow L_{p}(2<p<x)$ to have a best compact approximant (b.c.a.). The condition is that T map uniformly bounded weakly null sequences in L_{p} into norm null sequences. A corollary of this is the known result that (l_{p}, L_{p}) has the b.c.a.p. if $2<p<\alpha$.

To end this introduction we state without proof two elementary propositions.

Proposition 1. Let X and Y be reflexive. Then (X, Y) has the b.c.a.p. iff (Y^{*}, X^{*}) has the b.c.a.p.

[^0]Proposition 2. Let P be a norm one projection from the Banach space Z onto X. Let T be an operator from X into a Banach space Y. Then T has a best approximant in $K(X, Y)$ if TP has a best approximant in $K(Z, Y)$.

We use standard Banach space notation and terminology as may be found in the book of Lindenstrauss and Tzafriri [LT] and standard probabilistic material as may be found in the book of Chung [C]. $L_{p}=L_{p}([0,1], m)$, where m is Lebesgue measure.

We wish to thank Y. Benyamini for many useful discussions regarding this paper.

$$
\text { 2. }\left(l_{p}, L_{p}\right) \text { Fails THE b.c.a.p. }(1<p<2)
$$

We say a pair of Banach spaces, (X, Y), satisfies the Benyamini-Lin criterion (B.L.C.) if there exists $\phi:(0, \infty) \rightarrow(0, \infty)$ with $\lim _{z \rightarrow 0} \phi(\varepsilon)=0$ such that for all $T \in \mathscr{B}(X, Y)$ with

$$
1=d(T, \mathscr{K}(X, Y)) \leqslant\|T\|<1+\varepsilon
$$

and any $\delta>0$, there exists $K \in \mathscr{K}(X, Y)$ with $\|T-K\|<1+\delta$ and $\|K\|<$ $\phi(\varepsilon)$. Here $\mathscr{B}(X, Y)$ denotes all bounded linear operators from X into Y and $\mathscr{H}(X, Y)$ is the subspace of compact operators.

Lemma 3. [BL]. Let X and Y be either L_{p} or l_{p}. Then (X, Y) has the B.L.C. iff (X, Y) has the b.c.a.p.

Theorem 4. Let $1<p<2$. Then $\left(l_{p}, L_{p}\right)$ fails the B.L.C. and hence fails the b.c.a.p.

From Proposition 1 we obtain
Corollary 5. $\quad\left(L_{p}, l_{p}\right)$ fails the b.c.a.p. for $2<p<\infty$.
We shall need a series of lemmas before we can prove Theorem 4 .
Lemma 6. Let $1<p<2$. Then there exists y, a 2 -valued mean zero random variable on $[0,1]$ with $\|y\|_{p}=1$ and $\|y-1\|_{p}^{p} \geqslant 2+\delta$ for some $\delta>0$.

Proof. Let

$$
y=-r I_{[0.1 \ldots s}+r(1-s) s^{-1} I_{[1-s .1]}
$$

where $r>0,0<s<1$ and I_{A} denotes the indicator function of the set A. Clearly $\int_{0}^{1} y=0$. To have $\|y\|_{p}=1$ we also require $r^{p}=[(1-s)+$ $\left.(1-s)^{p} s^{1}{ }^{p}\right]^{-1}$. Let y^{+}and y^{-}be the positive and negative parts of y,
respectively. Assume $\left\|y^{+}\right\|^{n}=1-n^{1}$. This is accomplished for large n by taking s small. We shall show that if n is sufficiently large, $\|y-1\|^{p}>2$.

Simple calculation shows $\left.s=\left[1+(n-1)^{1 / 2}\right]^{1}\right]^{\prime} \equiv(1+k)^{1}$, where $k=(n-1)^{1 / p-1}$. Since for small s (or equivalently, large n) $y^{+}=r s^{\prime}-r>1$ on $[1-s, 1]$ and $\left\|y^{\prime}\right\|=1-n^{\prime}$,

$$
\begin{equation*}
\| y^{+}-I_{11} \quad \text { s.f } \|^{p}=\left(1-n^{1}\right)\left(r s^{1}-r-1\right)^{p}\left(r s^{1}-r\right)^{p} . \tag{1}
\end{equation*}
$$

Now

$$
\left.\begin{array}{rl}
r^{\prime} & =\left[1-(1+k)^{1}+\left[1-(1+k)^{1}\right]^{p}(1+k)^{\prime \prime}\right]^{1} \\
& =\left[k(1+k)^{1}+k^{p}(1+k)^{\prime \prime}(1+k)^{\prime}\right]^{\prime} \\
& =(1+k)\left(k+k^{p}\right) \\
& =(1+k) k^{\prime}\left(1+k^{p}{ }^{1}\right) \\
& =\left[\begin{array}{lll}
1+(n-1)^{1 / p} & 1
\end{array}\right]\left[(n-1)^{1: p}\right. \\
\text { ' } n
\end{array}\right]^{\prime} .
$$

Thus we see

$$
\begin{equation*}
n^{\prime}<r^{p}<2 n^{\prime} \tag{2}
\end{equation*}
$$

From (2) we have $r s^{\prime}-r \geqslant n^{1 ;}(1+k)-2 n^{1 ;}$. Since $(x-1) x^{\prime}$ is increasing for $x>0$, we get

$$
\begin{aligned}
(r s & (-r-1)\left(r s^{1}-r\right)^{1} \\
& \geqslant\left[(1+k) n^{\left.1 / p-2 n^{1 / n}-1\right]\left[n^{1 / n}(1+k)-2 n^{1 / n}\right]}\right. \\
& =\left(k n^{1 p}-n^{1 ; p}-1\right) n^{1 / p}\left(1+k^{1}-2\right)^{1} \\
& =\left(k-1-n^{1 ; p}\right)(k-1)^{1}=1-n^{1 p}(k-1)^{1}
\end{aligned}
$$

Thus by this and (1) we have since $p<2$,

$$
\begin{align*}
\left\|y^{+}-I_{\mid 1} \quad 11\right\|^{p} & \geqslant\left(1-n^{\prime}\right)\left(1-n^{1 p}(k-1)^{1}\right)^{p} \\
& \geqslant\left(1-n^{1}\right)\left(1-n^{1 p}(k-1)^{1}\right)^{2} \\
& \geqslant\left(1-n^{1}\right)\left(1-2 n^{1 / p}(k-1)^{1}\right) \\
& =1-n^{1}-2 n^{1 / p}(k-1)^{\prime}+2^{1 / p} \quad{ }^{1}(k-1)^{1} . \tag{3}
\end{align*}
$$

Also by (2) and $p>1$,

$$
\begin{align*}
& \left\|y \quad-I_{\Gamma 0,1} s\right\|^{p}=(1-s)(r+1)^{p} \\
& \geqslant\left[1-(1+k)^{1}\right]\left[1+n 1^{1 / p}\right]^{n} \\
& \geqslant\left[1-(1+k)^{1}\right]\left[1+n^{1 / n}\right] \\
& =1+n^{1 / p}-(1+k)^{1}-n^{1 / p}(1+k)^{1} \text {. } \tag{4}
\end{align*}
$$

Combining (3) and (4),

$$
\begin{align*}
\|y-1\|^{P} \geqslant & 2+n^{1 / p}+2 n^{1 / p} \quad 1(k-1)^{1} \\
& -\left[n^{-1}+2 n^{1 / p}(k-1)^{1}+(1+k)^{-1}+n^{1 / p}(1+k)^{1}\right] . \tag{5}
\end{align*}
$$

For sufficiently large $n,(1+k)^{1}$ and $(k-1)^{-1}$ behave like $n^{-1 / p-1}$. So, for large n, we can ignore some of the terms in the brackets of (5), namely, $(1+k)^{-1}$ and $(1+k)^{-1} n^{-1 / p}$, since they are dominated by $n^{1 / p}$. Now $n^{1 / p}(k-1)^{1}$ behaves like $n^{1 / p-1 / p} 1$ for large n and $-1 / p>1 / p-$ $1 /(p-1)=-1 / p(p-1)$. Thus $n^{1 / p}$ also dominates $2 n^{1 / p}(k-1)^{-1}$. Therefore, for sufficiently large $n,\|y-1\|^{p} \geqslant 2+\delta$ for dome $\delta>0$. Of course, δ depends upon n and decreases to 0 as $n \rightarrow \infty$.

Our next lemma is due to Rosenthal [R].
Lemma 7. Let $1<p<2$ and let $\left(x_{i}\right)_{i=1}^{\prime \prime}$ be independent mean zero random variables in L_{p}. Then

$$
\left\|\sum_{i=1}^{n} x_{i}\right\|_{p} \leqslant 2\left(\sum_{i=1}^{n}\left\|x_{i}\right\|_{p}^{p}\right)^{1 / p}
$$

Lemma 8. Let $1<p<2$ and let y be as in Lemma 6. Let $\left(x_{i}\right)_{i=1}^{x}$ be independent identically distributed random variables with $x_{1}=y$. Then for all j and scalars $\left(a_{i}\right)$,

$$
\left.\left|x_{j}+\sum_{i \neq j} a_{i} x_{i} \|^{p} \leqslant 1+2^{p+1} \sum_{i \neq j}\right| a_{i}\right|^{p} .
$$

Proof. We first state (without proof) an elementary inequality.
Sublemma.

$$
\begin{equation*}
\text { For any real } x,|1+x|^{p} \leqslant 1+p x+2|x|^{p} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { if } x \geqslant 0,(1+\mathrm{x})^{p} \leqslant 1+p x+x^{p} \tag{7}
\end{equation*}
$$

To prove Lemma 8, we may assume $j=1$ since the x_{i} 's are exchangeable. Let $x_{1}=y=-r I_{A}+s I_{B}$, where $A=[0,1-s)$ and $B=[1-s, 1]$. Then

$$
\begin{aligned}
\left\|x_{1}+\sum_{i \geqslant 2} a_{i} x_{i}\right\|^{p}= & |r|^{p} \int_{A}\left|1-\sum_{i \geqslant 2} a_{i} r{ }^{1} x_{i}\right|^{p} \\
& +|s|^{p} \int_{B}\left|1+\sum_{i \geqslant 2} a_{i} s_{i}{ }^{1} x_{i}\right|^{p}
\end{aligned}
$$

By (6), this is

$$
\begin{aligned}
& \leqslant|r|^{\prime \prime} \int_{A}\left(1-p \sum_{i \geqslant 2} a_{i} r^{\prime} x_{i}+2\left|\sum_{i \geqslant 2} a_{i} r^{\prime} x_{i}\right|^{\prime \prime}\right) \\
& \quad+|s|^{p} \int_{B}\left(1+p \sum_{i \geqslant 2} a_{i} s^{\prime} x_{i}+2\left|\sum_{i \geqslant 2} a_{i} s{ }^{\prime} x_{i}\right|^{\prime}\right)
\end{aligned}
$$

Since the x_{i}^{\prime} s are independent mean zero,

$$
\int_{A} x_{i}=\int_{B} x_{i}=0 \quad \text { for } \quad i \geqslant 2
$$

Thus, this is in turn

$$
\begin{aligned}
& =|r|^{p} m(A)+|s|^{p} m(B)+2 \int\left|\sum_{i \geqslant 2} a_{i} x_{i}\right|^{p} \\
& \leqslant 1+2^{p+1} \sum_{i \not 22}\left|a_{i}\right|^{p}
\end{aligned}
$$

where the last inequality follows by Lemma 7.
Let $1<p<2$ be fixed and let $\mathscr{K}=\mathscr{K}\left(l_{p}, L_{p}\right)$. Let $\delta>0$ be as in Lemma 6 and let $\delta_{n}=(2 n+2)^{1} \delta$. To prove Theorem 4 it suffices (by Lemma 3) to construct $\alpha>0, \varepsilon_{n} \downarrow 0$ and operators $S_{n}: l_{p} \rightarrow L_{p}$, satisfying:

$$
\begin{equation*}
1=d\left(S_{n}, \mathscr{K}\right) \leqslant\left\|S_{n}\right\|<1+i_{n} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { if } K \in \mathscr{K} \text { with }\|K\|<\alpha, \text { then }\left\|S_{n}-K\right\| \geqslant 1+\delta_{n} \tag{9}
\end{equation*}
$$

We first construct a sequence of (norm one) operators $T_{n}: l_{p} \rightarrow L_{p}$. Then we shall define compact operators $K_{n}: l_{p} \rightarrow L_{p}$ and set $S_{n}=T_{n}+K_{n}$. Fix $n \in N$ and let $\left(\tilde{g}_{i}\right)$ be a sequence of random variables supported in [0, (n-1)/n] satisfying:

$$
\begin{equation*}
\sum_{j=1}^{\infty} a_{j} \tilde{g}_{j} \|_{n}=\left(\sum_{j=1}^{\infty} a_{j}^{2}\right)^{1 / 2}[(n-1) / n]^{1 / p} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { for } x \in L_{p}[0,(n-1) / n], \lim _{j \rightarrow x}\left\|\tilde{g}_{j}-x\right\| \geqslant[(n-1) / n]^{1 / p} . \tag{11}
\end{equation*}
$$

To do this, let $\left(g_{j}\right)_{j=1}^{x}$ be a sequence of i.i.d. Gaussian random variables on $[0,1]$ with $\left\|g_{j}\right\|_{p}=1$. Thus $\left\|\sum a_{j} g_{j}\right\|_{p}=\left(\sum a_{j}^{2}\right)^{1 / 2}$. Define

$$
\tilde{g}_{j}(t)= \begin{cases}g_{j}(\operatorname{tn} /(n-1)), & \text { for } t \in[0,(n-1) / n] \\ 0, & \text { otherwise. }\end{cases}
$$

Then $\left\|\tilde{g}_{j}\right\|_{p}=(n-1) / n$ and (10) holds. Also, since $\left(g_{j}\right)$ is a sequence of symmetric i.i.d. random variables, for $x \in L_{p}$,

$$
\lim _{i}\left\|g_{i}-x\right\|=\lim _{i}\left\|g_{i}+x\right\|
$$

Thus, $\lim _{j} 2\left\|g_{j}\right\| \leqslant \lim _{j}\left(\left\|g_{j}+x\right\|+\left\|g_{j}-x\right\|\right)=2 \lim _{j}\left\|g_{j}-x\right\|$. Therefore, $\lim _{j}\left\|g_{j}-x\right\| \geqslant \lim _{j}\left\|g_{j}\right\|=1$. Equation (11) follows immediately.

Let $\left(x_{i}\right)$ be the sequence of i.i.d. random variables of Lemma 8 (i.e., $x_{1}=y$, where y is as in Lemma 6). Let

$$
\tilde{x}_{i}(t)= \begin{cases}x_{i}[(t-(n-1) / n) n], & \text { for } t \in[(n-1) / n, 1] \\ 0, & \text { otherwise }\end{cases}
$$

Thus \tilde{x}_{i} is just x_{i} squished into $[(\mathrm{n}-1) / n, 1]$, and so $\left\|\tilde{x}_{i}\right\|^{p}=n^{1}$ for all i.
Of course \tilde{x}_{i} and \tilde{g}_{i} depend upon n (fixed here) but rather than adopt a cumbersome notation we suppress n in the notation.

Define $T_{n}: l_{n} \rightarrow L_{p}$ by $T_{n}\left(e_{1}\right)=0$ and $T_{n}\left(e_{j}\right)=\tilde{g}_{j}+\tilde{x}_{j}$ for $j \geqslant 2$. Here $\left(e_{j}\right)$ denotes the unit vector basis of l_{p}. Thus $\left\|T_{n}\right\| \geqslant 1$. We show below (Lemma 11) that for sufficiently large $n,\left\|T_{n}\right\|=1$ and so (for large n)

$$
1=\lim _{j}\left\|T_{n}\left(e_{j}\right)\right\| \leqslant d\left(T_{n}, \mathscr{H}\right) \leqslant\left\|T_{n}\right\|=1
$$

Define $K_{n}: l_{n} \rightarrow L_{p}$ by $K_{n}\left(n^{1 / p} e_{1}\right)=-I_{\lceil 1} n_{1,1\rceil}$ and $K_{n}\left(e_{j}\right)=0$ for $j \geqslant 2$. Note $\left\|K_{n}\right\|=1$ and K_{n} is compact. Let $S_{n}=T_{n}+K_{n}$.

Our next object is to prove $\left\|T_{n}\right\|=1$ for large n. First we need some simple lemmas.

Lemma 9. Let $1<p<2$ and $\sum_{j=1}^{x}\left|a_{i}\right|^{p}=1$. Let $\sum_{j-1}^{x}\left|a_{i}\right|^{2} \geqslant 1-\varepsilon$. Then $\max _{i}\left|a_{j}\right|^{\prime \prime} \geqslant 1-g(\varepsilon)$, where $g(\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0$.

Proof.

$$
\begin{aligned}
1-\varepsilon & \leqslant \sum_{j=1}^{x}\left|a_{j}\right|^{2}=\sum_{j=1}^{x}\left|a_{j}\right|^{\prime \prime}\left|a_{j}\right|^{2 p} \\
& \leqslant \max _{j}\left|a_{i}\right|^{2 p} \sum_{j=1}^{\infty}\left|a_{j}\right|^{p} \\
& =\max _{j}\left|a_{j}\right|^{2}
\end{aligned}
$$

Thus $\max _{j}\left|a_{j}\right|^{p} \geqslant(1-\varepsilon)^{p / 2} \quad p \equiv 1-g(\varepsilon)$,

Lemma 10. For $1<p<2$, let

$$
f(x)=x\left[1-\left\{(1-x)^{2 p}+x^{2 \cdot p_{1}^{p 2}}\right]^{1}, \quad \text { if } 0<x<\frac{1}{1} .\right.
$$

Then f is a bounded function.
Proof: If $0<x \leqslant 1$, then $(1-x)^{2 p}+x^{2 ; p}<(1-x)+x=1$. Thus f is continuous on (0, $\frac{1}{2}$]. By L'Hopital's rule, $\lim _{x+10} f(x)=1$.

Notation. Let $1<p<2$ and let $f(x)$ be as in Lemma 10. Let $M=\sup \left\{f(x): 0<x \leqslant \frac{1}{2}\right\}$. Let $0<\delta_{0}<1$ be such that if $\sum\left|a_{j}\right|^{\prime \prime}=1$ and $\sum\left|a_{j}\right|^{2} \geqslant 1-\varepsilon_{0}$, then $\max _{j}\left|a_{j}\right|^{\rho} \geqslant 2$ (Lemma 9).

Lemma 11. Let $n_{0}=\max \left\{1+7 M, 2^{p}\left[1-\left(1-\varepsilon_{0}\right)^{2}\right]\right.$!. Then if $n \geqslant n_{0},\left\|T_{n}\right\|=1$.

Proof. Let $n \geqslant n_{0}$ be fixed. Let $\sum_{i}=\left|a_{j}\right|^{n}=1$. We must show $\left\|\sum_{i \geqslant 2} a_{i}\left(\tilde{g}_{i}+\tilde{x}_{i}\right)\right\|^{p} \leqslant 1$. By the exchangeability of $\left(\tilde{g}_{i}+\tilde{r}_{i}\right)_{i}^{\prime}$, we may suppose $\left|a_{2}\right|=\max _{i}\left|a_{i}\right|$.

Case 1. $\quad \sum_{i=2} a_{i}^{2} \geqslant 1-i_{0}$.
Thus, by our choice of $\varepsilon_{0},\left|a_{2}\right|^{p} \equiv 1-\varepsilon \geqslant 2$ ', so $0 \leqslant \epsilon \leqslant 2$ ' $^{\prime}$. If $\varepsilon=0$, then $\left|a_{2}\right|=1$ and $a_{j}=0$ for $j>2$ and the result is clear. If $a>0$, by (10) and Lemma 8

$$
\begin{aligned}
& \mid \sum_{i \geqslant 2} a_{i}\left(\tilde{g}_{i}+\tilde{x}_{i}\right) \|^{\prime \prime} \\
& =\left\|\sum_{i \geqslant 2} a_{i} \tilde{g}_{i}\right\|^{p}+\left\|\sum_{i \geqslant 2} a_{i} \hat{x}_{i}\right\|^{\prime \prime} \\
& \leqslant\left(1-n^{1}\right)\left(\sum_{i>2} a_{i}^{2}\right)^{p / 2}+n^{1}\left(\left|a_{2}\right|^{p}+2^{p+1} \sum_{i=2}\left|a_{i}\right|^{p}\right) \\
& \leqslant\left(1-n^{1}\right)\left[\left|a_{2}\right|^{2}+\max _{i>2}\left|a_{i}\right|^{2} p \sum_{i>2} a_{i}^{p}\right]^{p, 2} \\
& +n^{1}\left(1-\varepsilon+2^{p+1} \varepsilon\right) \\
& \leqslant\left(1-n^{\prime}\right)\left[(1-\varepsilon)^{2 p}+\varepsilon^{\prime 2} \quad \text { pip } ;\right]^{p 2} \\
& +n^{1}\left[1-\varepsilon+2^{p+1} \varepsilon\right] \\
& =\left(1-n^{1}\right)\left[(1-\varepsilon)^{2 p}+\varepsilon^{2 p}\right]^{p 2}+n^{1}\left[1-\varepsilon+2^{p+1} \varepsilon\right] \text {. }
\end{aligned}
$$

This last expression is $\leqslant 1$ provided

$$
\begin{aligned}
n & \geqslant\left[1-\varepsilon+2^{p+1} \varepsilon-\left\{(1-\varepsilon)^{2 / p}+\varepsilon^{2 ; p}\right\}^{p / 2}\right] \cdot\left[1-\left\{(1-\varepsilon)^{2 / p}+\varepsilon^{2 / p}\right\}^{p / 2}\right]^{-1} \\
& =1+\left(2^{p+1}-1\right) \varepsilon\left[1-\left\{(1-\varepsilon)^{2 / p}+\varepsilon^{2 / p}\right\}^{p / 2}\right]
\end{aligned}
$$

By the definition of M, this is true provided $n \geqslant 1+7 M$.
Case 2. $\quad \sum_{i \geqslant 2} a_{i}^{2}<1-\varepsilon_{0}$.
As in Case 1, by Lemma 7 ,

$$
\begin{aligned}
\mid \sum_{i \geqslant 2} a_{k}\left(\tilde{g}_{i}+\tilde{x}_{i}\right) \|^{p} & =\left(1-n^{1}\right)\left(\sum_{i \geqslant 2} a_{i}^{2}\right)^{p / 2}+n^{1}\left\|\sum_{i \geqslant 2} a_{i} x_{i}\right\|^{p} \\
& <\left(1-n^{1}\right)\left(1-\varepsilon_{0}\right)^{p / 2}+n^{\prime} 2^{p} \sum_{i \geqslant 2}\left|a_{i}\right|^{p} \\
& <\left(1-\varepsilon_{0}\right)^{p / 2}+n^{\prime} 2^{p} \leqslant 1,
\end{aligned}
$$

since $n \geqslant n_{0} \geqslant 2^{p}\left[1-\left(1-\varepsilon_{0}\right)^{p / 2}\right]^{1}$.
Our next lemma completes the verification of (8).
Lemma 12. $\left\|S_{n}\right\| \leqslant 1+\varepsilon_{n}$, where $\delta_{n} \rightarrow 0$ as $n \rightarrow \infty$.
Proof. Let $\sum_{i-1}^{{ }_{i}}\left|a_{i}\right|^{p}=1$. Then by (10) and Lemma 7,

$$
\begin{aligned}
\left.S_{n}\left(\sum_{i-1}^{2} a_{i} e_{i}\right)\right|^{p}= & \left|\sum_{i=2}^{2} a_{i} \tilde{g}_{i}\right|^{p} \\
& +\| \sum_{i=2} a_{i} \tilde{x}_{i}-\left.a_{1} n^{1 / p} I_{\lceil(n-1 \mid / n, 1]}\right|^{p} \\
\leqslant & (n-1) n^{-1}\left(\sum_{i \geqslant 2}\left|a_{i}\right|^{2}\right)^{p / 2} \\
& +\left[n^{1 / 2} 2\left(\sum_{i \geqslant 2}\left|a_{i}\right|^{p}\right)^{1 / p}+\left|a_{1}\right|\right]^{p} \\
\leqslant & \sum_{i \geqslant 2}\left|a_{i}\right|^{p}+\left[\left|a_{1}\right|+2 n^{-1 / p}\right]^{p}
\end{aligned}
$$

Let $R_{n}=\left[\left|a_{1}\right|+\left.2 n\right|^{1 / p}\right]^{p}$.
Case 1. $\left|a_{1}\right| \leqslant 2 n^{1 / p}$.
Then $R_{n} \leqslant\left[4 n^{-1 / p}\right]^{p}=4^{p} n{ }^{1}$.
Case 2. $\left|a_{1}\right|>2 n^{1 / p}$.

Then, by (7),

$$
\begin{aligned}
R_{n} & =\left|a_{1}\right|^{p}\left[1+2 n^{1 / p}\left|a_{1}\right|^{\prime}\right]^{\prime \prime} \\
& \leqslant\left|a_{1}\right|^{p}\left[1+2 p n^{1 / p}\left|a_{1}\right|^{1}+\left.2^{p} n\right|^{\prime}\left|a_{1}\right|^{\prime \prime}\right] \\
& =\left|a_{1}\right|^{p}+2 p n^{1 \cdot p}\left|a_{1}\right|^{p}{ }^{\prime}+\left.2^{p} n\right|^{\prime} \\
& \leqslant\left|a_{1}\right|^{p}+2 p n^{\text {I/p }}+2^{p} n{ }^{\prime} .
\end{aligned}
$$

Thus $\left\|S_{n}\right\| \rightarrow 1$ as $n \rightarrow \infty$.
It remains only to verify (9). We first need two elementary lemmas.
Lemma 13. Let $1 \leqslant p<x$ and let \mathscr{F} he a norm bounded subset of I_{p}. Then for all $\varepsilon>0$ there exists $\alpha_{0}>0$ such that if $\alpha \leqslant \alpha_{0}$ and $f \in \mathscr{\mathcal { F }}$,

$$
\||f|-\alpha\|_{p}^{p} \geqslant\|f\|_{p}^{p}-i .
$$

Proof. We may assume $\|f\|^{p}>8>0$. For simplicity we assume $p<2$ (the only case we need, anyway). Then if $\alpha<a^{1 / p}$,

$$
\begin{aligned}
\||f|-\alpha\|^{p} & \geqslant(\|f\|-x)^{p}=\|\left. f\right|^{p}\left(1-x\|f\|^{\prime}\right)^{\prime} \\
& \left.\geqslant\|f\|^{p}(1-\alpha \| f)^{\mathrm{y}}\right)^{2} \\
& =\left\|f^{p}\right\|^{p}\left(1-2 x\|f\|^{\mathrm{I}}+\alpha^{2}\left\|f^{\prime}\right\|^{2}\right) \\
& =\|f\|^{p}-2 \alpha\left\|f^{\prime}\right\|^{\prime}+\alpha^{2} f^{\prime}= \\
& =\|f\|^{p}+h(\alpha, f)
\end{aligned}
$$

where $h(\alpha, f) \rightarrow 0$ uniformly for $f \in \mathscr{F}$ with $\|f\|^{p} \geqslant \varepsilon$ as $\alpha \rightarrow 0$.
Lemma 14. Let $K: l_{p} \rightarrow L_{p}$ be a bounded linear operator with $\|K\| \leqslant$ $\eta^{1+1 / p}$ for some $\eta>0$. Then if A is any measurable subset of $[0,1]$, $\left|K\left(e_{1}\right)\right| \leqslant \eta[m(A)]^{-1 / p}$ on a subset of A of measure at least $(1-\eta) m(A)$.

Proof. Let $A_{0}=A \cap\left\{t:\left|K\left(e_{1}\right)(t)\right|>\eta[m(A)]^{\text {1.p }}\right\}$. Then $\eta^{p+1} \geqslant$ $\int_{A_{0}}\left|K\left(e_{1}\right)\right|^{p}>\eta^{p} m(A){ }^{1} m\left(A_{0}\right)$. Thus $m\left(A_{0}\right) \leqslant \eta m(A)$ or $m\left(A \backslash A_{0}\right) \geqslant$ $(1-\eta) m(A)$.

Our next lemma proves (9) and thus completes the proof of Theorem 4.
 exists $\eta>0$ so that for $n \in N$, if $K \in \mathscr{K}\left(l_{p}, L_{p}\right)$ with $\|K\| \leqslant \eta^{1+1 / p}$, then $\left\|S_{n}-K\right\| \geqslant\left(1+\delta_{n}\right)^{1 / p}$.

Proof.

Claim. There exist $\eta>0$ such that if K is compact with $\|K\| \leqslant \eta^{1+1 / p}$ and $j \geqslant 2$, then

$$
\begin{equation*}
\left\|\left[\tilde{x}_{j}-1-K\left(n^{-1 / p} e_{1}\right)\right] I_{[1} \quad n \quad 17\right\|^{p} \geqslant n^{1}(2+\delta / 2) . \tag{12}
\end{equation*}
$$

Suppose the claim has been proved. Let $K \in \mathscr{K}\left(l_{p}, L_{p}\right)$ with $\|K\| \leqslant$ $\eta^{1+1 i}$. Let $z_{j}=n^{1 / p} e_{i}+e_{j}$. Then $\left\|K e_{j}\right\| \rightarrow 0$ as $j \rightarrow \infty$ and so if $B=\left[1-n^{1}, 1\right]$,

$$
\left\|\left(S_{n}-K\right) z_{j}\right\|^{p}=\left\|T_{n}\left(e_{j}\right)-I_{B}-K\left(n^{1 / p} e_{1}\right)\right\|^{p}+\alpha_{i}
$$

(where $\alpha_{j} \rightarrow 0$ as $j \rightarrow \infty$)

$$
=\int_{B}\left|\tilde{x}_{j}-I_{B}-K\left(n^{1 / p} e_{1}\right)\right|^{p}+\int_{[0,1] B} \left\lvert\, \tilde{g}_{j}-K\left(\begin{array}{ll}
\left.n^{1 / p} e_{1}\right)\left.\right|^{p}+\alpha_{j} .
\end{array}\right.\right.
$$

Now by (11) and (12) this is (in the limit as $j \rightarrow \infty$)

$$
\geqslant n^{\prime}(2+\delta / 2)+n^{\prime}(n-1)=1+n^{1}+n^{\prime}(\delta / 2) .
$$

Thus

$$
\left\|S_{n}-K\right\|^{p} \geqslant\left[1+n^{-1}+n^{1} \delta / 2\right]\left[1+n^{-1}\right]^{1}=1+\delta_{n} .
$$

Proof of Claim. By Lemma 14, if $\|K\|<\eta^{1+1 / p}$ then $\left|K\left(n^{-1 / p} e_{1}\right)\right| \leqslant \eta$ on some subset of $\left[1-n^{1}, 1\right]$ of measure at least $(1-\eta) n^{-1}$. Thus to prove (12), it suffices to show that if η is taken sufficiently small and $y \in L_{p}$ is such that $|y| \leqslant \eta$ on a subset of $[0,1]$ of measure at least $1-\eta$ and $\left(x_{j}\right)$ are the random variables of lemma 8 , then

$$
\begin{equation*}
\| x_{j}-1-\left.y\right|^{p} \geqslant 2+\delta / 2 \tag{13}
\end{equation*}
$$

By Lemma 13 applied to $\mathscr{F}=\left\{\left|x_{j}-1\right|_{j=1}^{\infty}\right.$ and $\varepsilon=\delta / 8$, there exists $\eta_{0}>0$ so that if $0 \leqslant \eta \leqslant \eta_{0}$ then

$$
\begin{aligned}
\left\|\left|x_{j}-1\right|-\eta\right\|^{P} & \geqslant\left\|x_{j}-1\right\|^{p}-\delta / 8 \\
& \geqslant 2+7 \delta / 8 .
\end{aligned}
$$

Furthermore, the set of functions $\left\{\left|\left|x_{j}-1\right|-\eta\right|^{p}: j \in N, 0 \leqslant \eta \leqslant \eta_{0}\right\}$ is uniformly integrable (in fact, uniformly bounded) and so there exists $\eta_{1} \leqslant \eta_{0}$ so that if $D \subseteq[0,1]$ with $m(D) \geqslant 1-\eta_{1}$, and $0 \leqslant \eta \leqslant \eta_{1}$, then

$$
\begin{aligned}
\left\|\left.\left(\left|x_{j}-1\right|-\eta\right)\right|_{D}\right\|^{p} & \geqslant\left\|\left|x_{j}-1\right|-\eta\right\|^{p}-\delta / 8 \\
& \geqslant 2+3 \delta / 4 .
\end{aligned}
$$

Let $\eta=\min \left\{\eta_{1}, 2^{-1}(\delta / 4)^{1 / p}\right\}$. We verify (13).

Let $y \in L_{p} ; D=\{t:|y(t)|<\eta\}$ and suppose $m(D) \geqslant 1-\eta$. Then

$$
\begin{aligned}
& \left\|x_{j}-1-y\right\|^{p} \geqslant \int_{\left\lceil\left|x_{i}-1\right| \geqslant \eta \mid\right.}\left|x_{i}-1-y\right|^{\prime \prime} \\
& \geqslant \int_{\left|\left|x_{j}\right|\right| \geqslant \eta \mid}| | x_{j}-1|-\eta|^{p} I_{l} \\
& =\int| | x_{j}-1|-\eta|^{\prime \prime} I_{n}-\int_{-1|<\eta|}| | x_{j}-1|-\eta|^{\prime \prime} I_{1} \\
& \geqslant 2+3 \delta / 4-2^{p} \eta^{\prime} \geqslant 2+\delta / 2 \text {. }
\end{aligned}
$$

3. A Positive Result

L. Weis [W] has shown that if $1<p<\infty$ and $T: L_{p} \rightarrow L_{p}$ is an integral operator satisfying

> if $\left(x_{n}\right)$ is a uniformly bounded weakly null sequence in L_{p}, then $T x_{n} \| 0$
then T has a best compact approximant. In this section we shall show that if $p>2$ the assumption that T is integral may be removed.

Theorem 16. Let $2<p<\infty$ and let $T: L_{p} \rightarrow L_{p}$ be a bounded linear operator. Then if T satisfies (*), T has a best compact approximant.

Remark 17. By Theorem 4 and Proposition 2. the analogue of Theorem 16 is false for $1<p<2$.

The proof of Theorem 16 uses a criterion implicit in the work of Weis [W]. We say a set, \mathscr{C}, of bounded operators from X into Y is closed under compact perturbations if $T-K \in \mathscr{C}$ for all $T \in \mathscr{C}$ and $K \in \mathscr{K}(X, Y)$.

Lemma 18. Let 't be a set of bounded operators from X into Y which is closed under compact perturbations and scalar multiplication. Suppose there exists $0<\gamma<1$ and $c<\infty$ so that if $\varepsilon>0$ and $T \in \mathscr{C}$ is such that $\|T\|=1+\varepsilon$ and $d(T, \mathscr{K}(X, Y))=1$, then there exists $K \in \mathscr{K}(X, Y)$ with $\|K\| \leqslant c$ and $\|T-K\| \leqslant 1+\gamma$. Then every $T \in \mathscr{C}$ has a best compact approximant.

Proof. Let $T \in \mathscr{C}$. We may assume $\|T\|=1+\varepsilon$ with $\varepsilon>0$ and $d(T, \mathscr{K}(X, Y))=1$. Choose $K_{1} \in \mathscr{K}$ so that $\left\|K_{1}\right\| \leqslant \varepsilon_{1}$, where $\varepsilon_{1}=\varepsilon$, and $\left\|T-K_{1}\right\|=1+\varepsilon_{2}$ with $\varepsilon_{2} \leqslant \gamma \varepsilon_{1}$. Let $T_{1}=T-K_{1}$. Then $d\left(T_{1}, \mathscr{K}\right)=1$ and so we may choose $K_{2} \in \mathscr{K}$ with $\left\|K_{2}\right\| \leqslant \mathscr{C}_{2} \leqslant \mathscr{C}_{2} \varepsilon_{1}$ and $\left\|T_{1}-K_{2}\right\| \leqslant$ $1+\gamma \varepsilon_{2} \leqslant 1+\gamma^{2} \varepsilon_{1}$. Continue in this manner. It follows that \sum_{i}, K_{i} is
absolutely convergent $\left(\left\|K_{i}\right\| \leqslant c \gamma^{i-1} \varepsilon\right)$ to a compact operator K with $\|T-K\|=1$.

We need two more elementary lemmas.
Lemma 19. Let $\left(h_{i}\right)$ be the Haar basis for $L_{p}(1<p<\infty)$. Let P_{n} be the basis projection from L_{p} onto span $\left(h_{i}\right)_{i=1}^{n}$. Then if I is the identity operator on L_{p}. there exists $c_{p}<2$ such that for all $n,\left\|I-P_{n}\right\| \leqslant c_{p}$.

Proof. Since $\left\|P_{n}\right\|=1,\left\|I-P_{n}\right\| \leqslant 2$. Also $\left\|I-P_{n}\right\|=1$ in L_{2} and thus the result follows by interpolation.

Lemma 20. Let $\left(y_{n}\right)$ be a weakly null sequence in $L_{p}(1<p<\infty)$. Suppose $\left(\left|y_{n}\right|^{p}\right)_{n=1}^{x}$ is uniformly integrable and let $\left(k_{n}\right)$ be a subsequence of N. Then both $\left(\left|P_{k_{n}} v_{n}\right|^{p}\right)$ and $\left(\left|\left(I-P_{k_{n}}\right) y_{n}\right|^{p}\right)$ are uniformly integrable and weakly mull.

Proof. It suffices to show ($\left|P_{k_{n}} y_{n}\right|^{n}$) is uniformly integrable. But this follows since each $P_{k_{n}}$ is a conditional expectation projection (with respect to a finite σ-algebra of dyadic sets in $[0,1]$). Indeed, one can show that for $\delta>0, \sup \left\{\int_{A}\left|P_{k_{n}} y_{n}\right|^{p}: m(A) \leqslant \delta\right\} \leqslant \sup \left\{\int_{A}\left|y_{n}\right|^{p}: m(A) \leqslant \delta\right\}$.

Proof of Theorem 16. The class of operators on L_{p} which satisfy (*) is closed under compact perturbation and scalar multiplication. Thus, by Lemma 18, it suffices to show that if T satisfies $(*),\|T\|=1+\varepsilon$ and $d(T, \mathscr{H})=1$, then there exists a compact operator K with $\|T-K\| \leqslant 1+\gamma \varepsilon$ and $\|K\| \leqslant \ell$.

Let $\eta=\varepsilon(1+\varepsilon)^{11}$ so that $1-\eta=(1+\varepsilon)^{\prime}$. We shall show that $K_{n}=\eta T P_{n}$ works if n is sufficiently large and γ is any number larger than i^{\prime}, , where $c_{p}=1+\gamma_{p}$ is as in Lemma 19. Note $\left\|K_{n}\right\| \leqslant \varepsilon$.

Let $T-K_{n}=S_{n}=(1-\eta) T P_{n}+T\left(I-P_{n}\right)$. We must show $\left\|S_{n}\right\| \leqslant 1+\gamma \varepsilon$ for n sufficiently large. To make the following argument clearer we have ignored arbitrarily small errors. Choose $w_{n} \in L_{p}$ with $\left\|w_{n}\right\|=1$ and $\left\|S_{n}\left(w_{n}\right)\right\|=\left\|S_{n}\right\|$ (one small error ignored). By passing to subsequences several times (and ignoring the small errors) we may assume we have (k_{n}), a subsequence of N, so that

$$
\begin{equation*}
w_{k_{n}}=x+x_{n}, P_{k_{1}} x=x, \text { and }\left(x_{n}\right) \text { is weakly null. } \tag{14}
\end{equation*}
$$

$x_{n}=y_{n}+z_{n}$, where $\left(\left|y_{n}\right|^{p}\right)$ is uniformly integrable, $\left(z_{n}\right)$ is a disjointly supported sequence relative to $[0,1]$ and z_{n} is disjointly supported from $x+y_{n}$.
$\left(y_{n}\right)$ and $\left(z_{n}\right)$ are block bases of $\left(h_{n}\right)$ with $P_{k_{1}} y_{n}=0$ for all n.

$$
\begin{align*}
& \left\|S_{k_{n}}\left(w_{k_{n}}\right)\right\|=\left\|S_{k_{n}}\right\| . \tag{17}\\
& S_{k_{n}}\left(y_{n}\right)=0 \text { for all } n .
\end{align*}
$$

$T x$ is disjointly supported from both $T P_{k_{n}} z_{n}$ and $T\left(I-P_{k_{n}}\right) z_{n}$.

All of these may be accomplished by standard subsequence arguments. Result (14) is obtained by letting x be the weak limit of a subsequence of (w_{n}) and ignoring ($I-P_{k_{1}}$) x. Result (15) follows from the "subsequence splitting lemma" in L_{1} applied to $\left(\left|x_{n}\right|^{p}\right)$. Result (18), or actually $\left\|S_{k_{n}}\left(y_{n}\right)\right\| \rightarrow 0$ follows from Lemma 20, the definition of $S_{k,}$ and the fact that $(*)$ implies if $\left(f_{n}\right)$ is weakly null with $\left(\left|f_{n}\right|^{p}\right)$ uniformly integrable. then $\left\|T f_{n}\right\| \rightarrow 0$. (19) follows from the fact that $\left(z_{n}\right)$ may be assumed to be equivalent to the unit vector basis of l_{p} (if its not norm null) and since $p>2$ its image must have small support (see [KP]). Thus

$$
\begin{aligned}
\left\|S_{k_{n}}\right\|^{p} \stackrel{(14), n}{=} & \left\|S_{k_{n}}\left(x+x_{n}\right)\right\|^{p} \stackrel{(15), 11 x)}{=}\left\|S_{k_{n}}\left(x+z_{n}\right)\right\|^{p} \\
& \stackrel{(14)}{=}\left\|(1-\eta) T x+(1-\eta) T P_{k_{n}} z_{n}+T\left(I-P_{k_{n}}\right) z_{n}\right\|^{n} \\
& \stackrel{(19)}{=}\|(1-\eta) T x\|^{p}+\left\|(1-\eta) T P_{k_{n}} z_{n}+T\left(I-P_{k_{n}}\right) z_{n}\right\|^{n} \\
& \leqslant\|x\|^{p}+\left\|(1-\eta) T z_{n}+\eta T\left(I-P_{k_{n}}\right) z_{n}\right\|^{p} \\
& \leqslant\|x\|^{p}+\left[(1-\eta)\left\|T z_{n}\right\|+\eta \| T\left(I-P_{k_{n}=n} \|\right]^{p} .\right.
\end{aligned}
$$

Since $d(T, \mathscr{K})=1$, for large n we have (essentially) $\left\|T z_{n}\right\| \leqslant\left\|z_{n}\right\|$ and $\left.\left\|T\left(I-P_{k_{n}}\right) z_{n}\right\| \leqslant \| \mid I-P_{k_{n}}\right) z_{n} \|_{1}$. Thus, continuing, using Lemma 19.

$$
\begin{aligned}
&\left\|S_{k_{n}}\right\|^{p} \leqslant\|x\|^{p}+\left[(1-\eta)\left\|z_{n}\right\|+\eta\left(1+z_{p}\right) \|_{n}\right]^{p} \\
& \leqslant\|x\|^{p}+\left\|z_{n}!\right\|^{p}\left(1+\eta_{p}\right)^{p} \\
& \stackrel{(14) \cdot(16)}{\leqslant}\left(1+\eta_{p}\right)^{p}\left(\left\|x+y_{n}\right\|^{p}+\left\|z_{n}\right\|^{p}\right) \\
& \leqslant\left(1+\eta \gamma_{p}\right)^{p}\left\|x+y_{n}+z_{n}\right\|^{p} \\
&=\left(1+\eta \gamma_{p}\right)^{\prime \prime} \leqslant\left(1+a_{z_{p}^{\prime}}\right)^{\prime \prime} .
\end{aligned}
$$

Remark 21. It follows from Theorem 16 and Proposition 2 that $\left(l_{p}, L_{p}\right)$ has the b.c.a.p. for $2<p<\infty$. By Proposition 1, $\left(L_{p}, l_{p}\right)$ has the b.c.a.p. for $1<p<\infty$. By Theorem 4 and Proposition $1,\left(L_{p}, l_{p}\right)$ fails the b.c.a.p. for $2<p<\infty$. It is not known whether (l_{2}, L_{p}) or (L_{p}, l_{2}) has the b.c.a.p. for $1<p<\infty, p \neq 2$.

Also, it is not difficult to show the following spaces have the b.c.a.p.: $\left(l_{p}, L_{q}\right)$ for $2<p, q<\infty$ or $1<q<2<p<\infty$.

References

[ABJS] S. Axler, 1. D. Berg, N. Jeweli., and A. L. Shields, Approximation by compact operators and the space $H^{*}+c$, Ann. of Math. (2). 109 (1979), 601-612.
[C] K. L. Chung, "A Course in Probability Theory," Harcourt, Brace \& World. New York, 1968.
[BL] Y. Benyamini and P. K. Lin, An operator on L_{p} without best compact approximation, Israel J. Math. 51 (1985), 298-304.
$[F] \quad$ M. Feder, On a certain subset of $L_{1}[0,1]$ and non existence of best approximation in some spaces of operators, J. Approx. Theory 29 (1980), 170-177.
[KP] M. Kadec and A. Pelczynski, Bases, lacunary sequences and complemented subspaces in the spaces L_{p}, Studia Math. 21 (1962), 161-176.
[LT] J. Lindenstrauss and L. Tzafrirı, "Classical Banach Spaces I, Sequence Spaces," Springer-Verlag, New York, 1977.
[MW] J. Mach and J. Warl, Approximation by compact operators on certain Banach spaces, J. Approx. Theory 23 (1978), 274-286.
[R] H. P. Rosenthal, On the subspaces of $L^{p}(p>2)$ spanned by sequences of independent random variables, Israel J. Math. 8 (1970), 273- 303.
[W] L. Weis. Integral operators and change of density, Indiana Unit. Math. J. 31 (1982), 83-96.

[^0]: * Research partially supported by the National Science Foundation under Grants DMS-8201635 and 8303534.

