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We construct (for 1 <p<2) an operator from /, into L, which has no nearest
compact operator. We also give a sufficient condition for an operator from 7., into
L, (2<p< ) to have a best compact approximant. ¢ 1987 Academic Press, Inc

1. INTRODUCTION

A pair of Banach spaces, (X.Y). is said to have the best compact
approximation property (b.ca.p.) il, for every bounded linear operator
T: X — Y, there exists a compact operator K: X — Y satisfying || T— K| <
| T— K'|| for all compact K'. We say X has the b.c.a.p. if (X, X) does. It is
known that /, has the b.ca.p. for I <p< x (scc [ABIS:MW]) while /, .
L,, L, and C[0,1] fail to have it [F]. Recently, with an clegant
argument, Benyamini and Lin [ BL] showed that, for | <p<x.p#2, L,
fails the b.c.a.p. In this paper we extend their result by showing (/,. L) fails
the b.ca.p. for 1 <p <2 (Theorem 4). We use their key lemma (Lemma 3)
but the technical details in our case are much more difficult.

In the last section of this paper (Theorem 16) we give a sufficient con-
dition for an operator 7:L,—» L, (2<p< %) to have a bhest compuct
approximant (b.c.a.). The condition i1s that 7 map uniformly bounded
weakly null sequences in L, into norm null sequences. A corollary of this is
the known result that (/,, L) has the bca.p. if 2<p <.

To end this introduction we state without proof two elementary
propositions.

PROPOSITION 1. Let X and Y be reflexive. Then (X, Y) has the b.c.ap. iff
(Y™, X*) has the b.c.a.p.
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PROPOSITION 2. Let P be a norm one projection from the Banach space Z
onto X. Let T be an operator from X into a Banach space Y. Then T has a
best approximant in K(X, Y) if TP has a best approximant in K(Z, Y).

We use standard Banach space notation and terminology as may be
found in the book of Lindenstrauss and Tzafriri [LT] and standard
probabilistic material as may be found in the book of Chung [C].
L,=L,([0, 1], m), where m is Lebesgue measure.

We wish to thank Y. Benyamini for many useful discussions regarding
this paper.

2. (/,, L,) FaiLs THE b.cap. (1 <p<2)

ne

We say a pair of Banach spaces, (X, Y), satisfies the Benyamini-Lin
criterion (B.L.C.) if there exists ¢: (0, oc)— (0, oc) with lim,,é(e)=0
such that for all Te #(X, Y) with

l=d(T, #(X. Y)<| Tl <1+¢

and any 0 >0, there exists Ke # (X, Y) with [T—K|| <1+ and | K| <
#(¢). Here #(X, Y) denotes all bounded linear operators from X into ¥ and
H(X, Y) is the subspace of compact operators.

Lemma 3. [BL]. Let X and Y be either L, or I,. Then (X, Y) has the
B.L.C.iff (X, Y) has the b.c.ap.

THEOREM 4. Let | <p <2. Then (I,, L,) fails the B.L.C. and hence fails
the b.cap.

From Proposition 1 we obtain

COROLLARY 5. (L ) fails the b.c.ap. for 2 <p < oo.

f”[l’

We shall need a series of lemmas before we can prove Theorem 4.
LEMMA 6. Let 1 <p<2. Then there exists y, a 2-valued mean zero ran-
dom variable on [0, 1] with | y|,=1and | y—1][2=2+6 for some 6> 0.
Proof. Let
y=—rlj, o+r(l—s)s” 1IrI e

where r>0, 0<s< 1 and I, denotes the indicator function of the set A.
Clearly [jy=0. To have | yl,=1 we also require r”=[(1—-s)+
(1 —sys'" 71 ' Let ' and y~ be the positive and negative parts of y,
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respectively. Assume | y* |”=1—n ' This ts accomplished for large n by
taking s small. We shall show that if » is sufficiently large, | y — 17> 2.

Simple calculation shows s=[1+(n—1}'" '] '"=(1+k) ', where
k={(rn—1)""' Since for small s (or equivalently, large #)
yt=rs '—r>lon[l—s1]and |y |=1—n "

[y =1y oql7=—n "Yrs P—r—1)"(rs T—r) " (h
Now
e N S R N O S IR LN R S L
=[k(1+k) "Hh (k) P (1+K) 1]
=(1+k)k+kr) !
=(l+k)k "(1T+k" ")
=[1+(n—D" "Jn=1)" 'n] "
Thus we see
n i< (2)
From (2) we have rs '—r=n "7(1+k)—2n "7 Since (x—1)x ' is

increasing for x >0, we get
(rs "—r—=1)rs '—ry !
>[I +kyn '"7=2n "7 ][n "P(14+k)-2n 7] !
=(tkn '""—n " 1)n'" (1 +k-2) "
=th—1-=n"")k=1) "=l -n""k—1) "
Thus by this and (1) we have since p < 2,
Iy' =1, "= =n Hl—n"rtk—1) ")
Z(1—n "Yt—=n'"r"lk=1) ')
2(1—n "Y1 =2n""k=1) ")
=1—n "=2n'Pk -1y "2V YWk—1) " (3)
Also by (2) and p> 1,

Iy —lroa oll”=00—=sir+1)"
2[1—(1+k) "I[1+a "]

2[1—(1+k) "I[1+n '7]
—l4n o (1+k) "—n "P(1+k) " (4)
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Combining (3) and (4),

lv—=1"=224n "7420" YYhk—1) !
Tn 2 k1) V(1 k) a4k T (5)

For sufficiently large n, (1+k) ' and (k—1) ' behave like n "7 ! So,
for large », we can ignore some of the terms in the brackets of (5), namely,
(14+4k) " and (1 +k) 'n '», since they are dominated by n '”. Now
n'"7(k—1) ' behaves like n'? ' ' for large n and —1/p>1/p—
1/ (p—1)=—1/p(p—1). Thus n '” also dominates 2n"7(k—1)" "
Therefore, for sufficiently large n, | y— 1”22+ for dome §>0. Of
course, ¢ depends upon n and decreases to 0 as n— 0. ||
Our next lemma is due to Rosenthal [R].

LEmMa 7. Let 1 <p<2 and let (x;)!_, be independent mean zero ran-
dom variables in L,. Then

H
> X

i=1 !

/on 1ip
(i) "
<2\ & Yl

PR NG

LEMMA 8. Let 1 <p<2 and let v be as in Lemma6. Let (x;)_, be

independent identically distributed random variables with x, = y. Then for all
j and scalars (a;),

‘x, + Z ax;

: i+

I?
<142701Y Ja,]”

i+

Proof.  We first state (without proof) an elementary inequality.

SUBLEMMA.
For any real x, |1 +x|”< 1+ px+2|x|”, (6)
and
fx=0,(1+x)"<1+px+x”. (7)

To prove Lemma 8, we may assume j =1 since the x/s are exchangeable.
Let xy=y=—rl,+sly, where A=[0,1—s)and B=[1—s,1]. Then

I’
X+ Y ax, :]r|”f ‘]— Y ar 'x|”
iz2 ‘ A i=?
a
+{s\”j 1+ ) as, 'x,
B =2
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By (6), this is

PN

<|r”|‘<pZa; X, +2 ‘Zar 'x,

" PN
+is]” ] <1 +p ) as x+2 'x,
VB Fz2
Since the x;'s are independent mean zero,
' \,:J v, =0 for i=2
=i B
Thus, this is in turn
N r
=|r|"m(A)+ |s|"m(B)+2 ' a;x;

<1427 Y Jay |,
i 2

where the last inequality follows by Lemma 7. |

Let I <p<2be fixed and let .# = #7(/,, L,). Let 6 >0 be as in Lemma 6
and let 6,=(2n+2) '8. To prove Theorem 4 1t suffices (by Lemma 3) to
construct >0, ¢, | 0 and operators S,:/, - L, satisfying:

=d(S,. #)<iS, | <l +s, (8)

and

it Ke # with | K| <a then S, -K|=1+4,. (9)

We first construct a sequence of (norm one) operators 7,,:/, — L. Then
we shall define compact operators K,:{, —» L, and set S, =T7,+K,. Fix
neN and let (g,) be a sequence of random variables supported in
[0, (n—1)/n] satisfying:

5
| .

‘ Z a;8; (Z a/z) - [(’7“1)/’”]'"’1 (10)

|
|
Py

and

for xe L [0, (n—1)/n], ‘lim | & —xiz[(n—1 )]l (1)
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To do this, let (g;)7~, be a sequence of i.i.d. Gaussian random variables
on [0, 1] with || gl ,=1. Thus | ¥ a, g,|l, = (X a})"”. Define

. g(tn/(n—1)), forte {0, (n—1)/n]
&)= {0 _
R otherwise.

Then || ;|| ,=(n—1)/n and (10} holds. Also, since (g;) is a sequence of
symmetric i.1.d. random variables, for xe L,,

lim | g, —x[f=lim | g, 4 x|.
! 7

Thus, lim, 2 || g;|| <lim(|| g, + x| + || g;—x||)=21lim, || g;— x||. Therefore,
lim, || g,— x| >1lim, || g, = 1. Equation (11) follows immediately.

Let (x;) be the sequence of iid. random variables of Lemma 8 (ie.,
x, =y, where p is as in Lemma 6). Let

. {.\',[(t* (n—1)/n)yn], for te[(n—1)n 1]
XA1)=

0, otherwise.

Thus %, is just x, squished into [(n—1)/n, 1], and so | %,|” =n ' for all i
Of course ¥; and g, depend upon » (fixed here) but rather than adopt a
cumbersome notation we suppress # in the notation.
Define 7,:/,— L, by T,(e;)=0 and T,(¢;)=g,+ ¥, for j=2. Here (¢;)
denotes the unit vector basis of /,. Thus [|7,[|>1. We show below
{Lemma 11) that for sufficiently large #, | T,,| =1 and so (for large n)

L=lim | T,(e)| <dT,. #)<|T,|=1.
’

Zal il

Define K,:/,— L, by K,(n '7e;)=—1I,, , 1, and K, (¢;)=0 for j=2.
Note | K, =1 and K, is compact. Let S,=7T,+ K,,.

Our next object is to prove || T, || =1 for large n. First we need some
simple lemmas.

LEMMA 9. Let l<p<2and 3/ | |a;|"=1. Let ¥ | |a;|” =1 ~¢ Then
max; |a,|” = | —g(e), where g(e) -0 as ¢ - 0.

Proof.

rs s
2
1—e< ) g =Y la|”|a,)” 7
;=1 i
L
<max |a;1° 7Y la|”
J Py

=max |q,|° "
;

Thus max; |a,|” = (1 —&)"? "=1—g(e), |

640:51.3-7
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LEMMA 10. For 1 <p <2, let
fx)y=x[1—{(1—x)y*r4xrr] il 0<v<l

Then [ is a bounded function.

Proof. If 0<x<1, then (1 —x)"7 4+ x"7<(l —x)+x=1 Thus f is
continuous on (0, 4]. By L'Hopital's rule. lim , f(x)=1 |

Notation. Let 1<p<2 and let f(x) be as in Lemma 10. Let
M=sup{f(x): 0<x<i]. Let 0<g,<1 be such that if 3 |a,|”=1 and
S la,?>1—¢,, then max,|a,|” 22 ' (Lemma9).

Lemma 11, Let ny = max {1 + 7M., 27[1 — (1 — ¢} 1 '), Then if
n>n()’ H T.u“ - 1

Proof. Let nzn, be fixed. Let 3/ . |a,/|”"=1Wc must show
12 is2a(g:+%)]”<1. By the exchangeability of (g,+%,) ,. we may
suppose |a,| = max, | q;].

5

Case 1. Y a:=21—g,.

Thus, by our choice of &,, |u-|"=1—-c22 "Lso0<e <2 " IMe=0,
then |a,| =1 and ¢, =0 for j> 2 and the result is clear. If £ >0, by (10) and
Lemma 8§

pi2 p .
<(1-n ‘)(Z af) tn ‘(|a:\”+2”" s \a,l”)

) 7 N

p2
<(l—n l){‘azlz—i-maxla,|2 ”Zu{’J
]>2 -2 -

P2

+n '(1—e4+27 )
<(1—n N[ =7 4= 77e]r”
+n '[1—e4+27" "]

=(1—=n Y=+ +n "TL—e+20" 2]
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This last expression is <1 provided

> [1 _£+2P+18___{(1 *8)2,'[?*_82,[’}[7,”2] i [l _ {(1 ﬁg)l,'p_}_g?.ﬂp}p;?_]—fl
Q2 ) e[ = (L e el L

By the definition of M, this is true provided n>1+ 7M.
Case 2. Y. ,a;<l-—g,.
As in Case 1, by Lemma 7,

n pi2
=(1—n 1)( af) +n

<(l—n "“Y1—e)?+n 273 |a,|”

iz=2

r
Y, ax;

iz2

<(l—g,)+n 2r<1,
since n=2n, 2 27[1—(1 —g)”2] " |
Our next lemma completes the verification of (8).
LeMMa 120 | S, <1 +¢,, where ¢, =0 as n— .

Proof. Let 37 | la,|”=1.Then by (10) and Lemma 7,

‘; " ‘p ‘ P

> tip
aX;—an I, ) "

(g )

=

L:p 14
+[n '”2(2 |a,|”> +|a,!:|

< Z la )"+ [la, ) +2n Vr]r.

Pz2

Let R, =[la,|+2n "7
Case t. |a,|<2n '7.
Then Rng [4n "I"/’]I’___4pn 1.

Case 2. |a,|>2n "7
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Then, by (7),
R,=|a,|”[1+2n "7 la;| ']”
Llat? [1+2pn " a,| "+270 'a,l "]
=|a,|”+2pn "7 |a,|” " +2n !
<lay)?+2pn Y4200
Thus | S,| > 1 asn—o. |
[t remains only to verify (9). We first need two elementary lemmas.

Lemma 13, Ler 1 <p<x and let F be a norm bounded subset of L,
Then for all £>0 there exists ay >0 such that if x <, and fe F,

IEIresrarer

Proof. We may assume || /'||”>¢>0. For simplicity we assume p <2
(the only case we need, anyway). Then if 2 < "7,
Al =272 == f17 =2 ]
S =i f )
=USIT =22 S S
=0 =20 [N T S
= /01" + Al f)

where h(a, f) — 0 uniformly for f'e # with || f|"=cas a—0. |

LemMmA 14, Ler K:l,— L, be a bounded linear operator with || K| <
n' P for some w>0. Then if A is uny measurable subset of [0,1],
| K(e )l <nlm(A)] 7 on a subset of A of measure at least (1 —n)m(A).

Proof. let Ay,=An {t:|K(e ) 1) > n[m(A)] ""}. Then »”"'
ao | K(e)I”>nm(A) ' m(Ay). Thus m(d,) <nm(A) or m(A\A,)
(1=n)ym(A). 1

Our next lemma proves (9) and thus completes the proof of Theorem 4.

=
>

LEMMA 15. Let 8,=(2n+2) '0, where & is us in Lemma 6. Then there
exists 1>0 so that for neN, if Ke #'([,, L,) with | K| <n'*"" then
H Sn - K” = (1 + 5/1)1”"

Proof.
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Claim. There exist #>0 such that if K is compact with | K| <y'*!”
and j =2, then

1% —1=K(n""e )1y, qll”2n H(2+0/2). (12)

Suppose the claim has been proved. Let Ke #'(/,, L,} with | K| <
n'*'7. Let z;=n "Pe,+e¢, Then |[[Ke;|>0 as j—oc and so if
B=[1-n " 1],

(S, —K) 2, I”= T (e) — Iz — K(n "7e))|” +2,
(where 2, -0 as j— x)
:|B %, 1y~ K(n ‘V'Pe,)|f’+J‘ml]xB |G, K(n "7e))|” +a,
Now by (11) and (12) this is (in the limit as j — o)
=n '2+3/2)+n "m-1)=1+n "+n "5/2)
Thus
1S, —K|”=[1+n "+n $2][1+n" '] '=1+34,.

Proof of Claim. By Lemma 14, if | K| <n'* "7 then | K(n~""e,)| <y on
some subset of [1 —n ', 1] of measure at least (1 —#)»n~'. Thus to prove
(12), it suffices to show that if # is taken sufficiently small and y € L, is such
that | y| <# on a subset of [0, 1] of measure at least 1 —# and (x,) are the
random variables of lemma 8, then

[x,—1—yp["2246/2. (13)

By Lemma 13 applied to # = {|x;— 1|}/, and e¢=0/8, there exists

#o >0 so that if 0 <5 <y, then

Hx, = =nl”=1llx,— 11" —0/8
=24 70/8.
Furthermore, the set of functions {||x,—1]—#n|":jeN, 0<n<n,} is
uniformly integrable (in fact, uniformly bounded) and so there exists
7 <no so that if D= [0, 1] with m(D)=1—#,, and 0<#n <17, then
Ix, = =mlpl”Z1x;,— 1 —nl”—05/8
=2+ 35/4

Let n=min{n,, 2 '(5/4)""}. We verify (13).
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Let yeL,; D= {t:| »(t)| <n} and supposc m(D)>1—n. Then

%= L=y >| = 1=y
MERTEREE A
> | =1 =nl"1,
STl 1]
= Hx, =1 =nl" 1~ | BT

T R

22436/4-2"y"22+072. |

3. A PosITIVE RESULT

L. Weis [ W] has shown that if | <p < and T: L,— L, is an integral
operator satisfying

if (x,) 1s a umformly bounded weakly

50 (%)

null sequence in L, then | T, |
then 7 has a best compact approximant. In this section we shall show that
if p>2 the assumption that T is integral may be removed.

THEOREM 16. Let 2<p< o and let T:L,— L, be a hounded linear
operator. Then if T satisfies (%), T has a best compact approximant.

Remark 17. By Theorem 4 and Proposition 2. the analogue of
Theorem 16 is false for 1 <p < 2.

The proof of Theorem 16 uscs a criterion implicit in the work of Weis
[W]. We say a set, %, of bounded operators from X into Y is closed under
compact perturbations if T— Ke % for all Te 4 and Ke #(X, Y).

LEMMA 18. Let 6 be a set of bounded operators from X into Y which is
closed under compact perturbations and scalar multiplication. Suppose there
exists 0 <y <l and c <o so that if e>0 and Te € is such thar | T||=1+¢
and d(T, A (X, Y))=1, then there exists Ke # (X, Y) with | K| <ce and
| T— K| <1+vye. Then every Te€ has a best compact approximant.

Proof. Let Te%. Wec may assume | 7T]l=1+4+¢ with ¢>0 and
d(T, A (X, Y))=1. Choose K, e so that | K, <cg,, where ¢, =+, and
IT—K |=1+¢, with ¢, <ye,. Let Ty=T—K,. Then d(T,, #)=1 and
so we may choose K,e.# with | K,||<ce,<eye, and [T, — K, <
1+ ye;<1+7y%,. Continue in this manncr. It follows that ¥,/ K, is



BEST COMPACT APPROXIMATION PROBLEM 285

absolutely convergent (|| K| <c¢y'~'e) to a compact operator K with
IT—Ki=1 1
We need two more elementary lemmas.

LEMMA 19, Let (h,) be the Haar basis for L, (1 <p< o). Let P, be the
basis projection from L, onto span(h,)!_ . Then if I is the identity operator
on L,. there exists ¢, <2 such that for all n, |I-P,|| <c,.

Proof. Since | P,|=1, |{—P,| <2 Also |[/—P,||=1in L, and thus
the result follows by interpolation. |

LemMa 20.  Ler (v,) be a weakly null sequence in L, (1 <p<ao). Sup-
pose (| v, 17);_ is uniformly integrable and let (k,) be a subsequence of N.
Then both (| P, v,1") and (|(I— P, )y,|") are uniformly integrable and
weakly null.

Proof. 1t suffices to show (| P, y,|”) is uniformly integrable. But this
follows since each P, is a conditional expectation projection (with respect
to a finite g-algebra of dyadic sets in [0, 1]). Indeed, one can show that for
3> 0, supt | P, vul”: m(A) <O} <supf{f | p,|7:m(A)<6}. |

Proof of Theorem 16. The class of operators on L, which satisfy () is
closed under compact perturbation and scalar multiplication. Thus, by
Lemma 18, it suffices to show that if 7T satisfies (x), |T]=1+4¢ and
d(T, . # y=1, then there exists a compact operator K with || T— K| <14 y¢
and |K|| <e.

Let y=¢(l+¢) ' so that 1—n=(1+¢) ' We shall show that
K,=nTP, works if n is sufficiently large and y is any number larger than
v, where ¢, =147, is as in Lemma 19. Note || K, || <«

Let T—K,=S,=(1—n) TP, + T(I—P,). We must show || S, <1+
for n sufficiently large. To make the following argument clearer we have
ignored arbitrarily small errors. Choose w,eL, with [w,|[=1 and
I1S,00,)1 =18, (one small error ignored). By passing to subsequences
several times (and ignoring the small errors) we may assume we have (&),
a subsequence of N, so that

w,, =x+x,, P, x=x and (x,)1is weakly null (14)

x,=1,+z,, where (| y,|”) is uniformly integrable, (z,) is a dis-
jointly supported sequence relative to [0, 1] and z,, is disjointly

supported from x+ y, . (15)
(r,)and (z,) are block bases of (A,) with P,, y,=0for all n. (16)
1S, (w1l = 1 S I (17)

S (v,)=0forall n. (18)

Tx is disjointly supported from both TP, z, and T(/— P, ) z,. (19)
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All of these may be accomplished by standard subsequence arguments.
Result (14) 1s obtained by letting x be the weak limit of a subsequence of
(w,) and ignoring (/— P, ) x. Result (15) follows from the “subsequence
splitting lemma” in L, applied to (|x,|”). Result (18), or actually
ISyl =0 follows from Lemma 20, the definition of S, and the fact
that (x) implies if (f,) is weakly null with (| f,}”} uniformly integrable.
then | 71, | — 0. (19) follows from the fact that (z,) may be assumed to be
equivalent to the unit vector basis of /, (if its not norm null) and since
p>2 its image must have small support (see [KP]). Thus

1S 17 S, e TR S (e 2

N T+ (1= TP 2+ TU =P, )2,

A=) Tx| "+ 1 (1 =) TPz, + T(I P, )z, || "
H “/)+ ” 1—’7) 7‘-;1 ’7T(1 PA ) ~n \
<hx["+ L= Tz, 4+ 1 TU~ Py 20117

Since d(T, #)=1, for large n we have (essentially) | 7-,] < |z, and
| T(I— Py, z, | <1 —P,)z,Il. Thus, continuing, using Lemma 19,

IS <l + L =mz, T+ a5 )02, 17
S+ Dz, 07 (h+a7,)"

(14).(16)
< (1 + n’\/’p)p (H~Y+_l',,‘\,] + ‘\:n H ,))

5

<(1+’7//) /) H\+1n+ HHF
=L+ )<l +ep,)7 |

Remark 21. 1t follows from Theorem 16 and Proposmon 2that (/,, L,)
has the bcap for 2<p <. By Proposition 1, (L,, /,) has the b.ca.p. for
1 <p<oc. By Theorem 4 and Proposition I, (L. ,,) fails the b.c.a.p. for
2<p<c. It is not known whether (/,, L)) or (L,./,) has the b.ca.p.
for t<p<oo, p#2.

Also, it 1s not difficult to show the following spaces have the b.ca.p.:
(L, L)for2<p,g<xorl<g<2<p<ao.

(
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